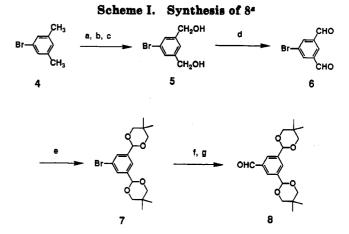
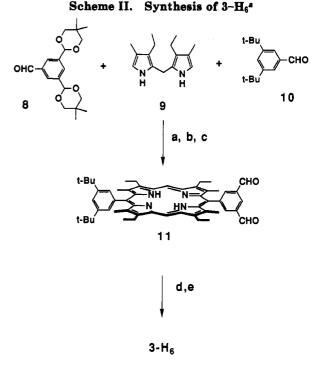
Synthesis of a 1,3,5-Triporphyrinylbenzene

Atsuhiro Osuka,* Ben-li Liu, and Kazuhiro Maruyama

Department of Chemistry, Faculty of Science, Kyoto University, Kyoto 606, Japan


Received January 8, 1993

In recent years, a variety of porphyrin oligomers have been prepared as models for photosynthetic reaction centers and as four-electron oxygen-reduction catalysts. Increasing effort has been devoted to the synthesis of conformationally restricted models, since these models allow examination of the dynamics of electron and/or energy transfer events without the complication caused by conformational motions.^{1,2} Among the conformationally restricted models, 5-aryloctaalkylporphyrins and 5,-15-diaryloctaalkylporphyrins have often been used³ because of their easy preparation, their high symmetry, and the thermal stability of their atropisomers. A 1,3phenylene-bridged diporphyrin of this type was first prepared, albeit in low yield, by Sessler.^{3b} However, we are not aware of any 1,3-phenylene-bridged porphyrins in which more than two porphyrins are connected to one benzene ring. Herein we describe an efficient synthesis of 1,3,5-triporphyrinylbenzene 3, the first example of a porphyrin oligomer in which three porphyrins are attached to one benzene ring, in a constrained propeller-like geometry. The key transformation of this synthesis is the condensation of 3,5-di-tert-butylbenzaldehyde (10)⁴ and diformyl-substituted porphyrin 11-H₂ with bis(3-ethyl-4-methyl-2-pyrrolyl)methane (9)⁵ under acidic conditions.


3,5-Bis(5,5-dimethyl-1,3-dioxan-2-yl)bromobenzene (7) was prepared in five steps from commercially available 5-bromo-m-xylene (4) (Scheme I): (1) bromination (2.5 equiv of NBS, CCl₄, reflux overnight in the presence of BPO); (2) acetolysis (excess of sodium acetate, AcOH, reflux overnight); (3) reduction (LiAlH₄, THF, 0 °C, 2 h); (4) oxidation (PCC, CH_2Cl_2 , room temperature, 3 h); and (5) protection (neopentyl alcohol, TsOH, CH₂Cl₂, room temperature, overnight). The total yield of 7 from 4 was 45%. 3,5-Bis(5,5-dimethyl-1,3-dioxan-2-yl)benzaldehyde (8) was prepared in 83% yield from the reaction of 7 with magnesium and subsequent treatment of the Grignard intermediate with DMF.

The synthetic route of 3 is outline in Scheme II. Aldehydes 8 and 10 were condensed with 9 in the presence of trichloroacetic acid in acetonitrile, and the resulting solution containing porphinogen compounds was oxidatively treated with p-chloranil.⁶ After oxidized products were heated in an aqueous trifluoroacetic acid-CH₂Cl₂ mixture and metalated with Zn(OAc)₂, the porphyrin products were separated by flash column chromatography

Chem. 1990, 27, 1657.

^a Key: (a) NBS (2.5 equiv), BPO, CCl₄, reflux, 24 h; (b) AcONa (large excess), AcOH, reflux, 24 h; (c) LiAlH₄, THF, 0 °C, 2 h; (d) PCC, CH₂Cl₂, rt, 3 h; (e) neopentyl alcohol, TsOH, CH₂Cl₂, rt, 24 h; (f) Mg, THF, reflux, 24 h; (g) DMF, THF, 0 °C.

^a Key: (a) CCl₃CO₂H, CH₃CN, rt, 14 h; (b) p-chloranil, THF, rt, 3 h; (c) CF₃CO₂H, H₂O, CH₂Cl₂, reflux, 6 h; (d) 9 (10 equiv), 10 (8 equiv), CCl₃CO₂H, CH₃CN, rt, 20 h; (e) p-chloranil, THF, rt, 3 h.

(silica gel, CH_2Cl_2) to give porphyrins 1–Zn and 11–Zn. Free-base porphyrins 1-H₂ and 11-H₂ were prepared by demetalation of the corresponding zinc prophyrins with aqueous HCl. Finally, $11-H_2$ was condensed with excesses of 9 and 10 under similar conditions. After oxidation and metalation, to our surprise, triporphyrin 3-Zn₃ was obtained in 90% yield (based on the amount of $11-H_2$ used); the double porphyrin cyclization was effected in nearly quantitative yield in the one-pot reaction. We also attempted the preparation of diporphyrin 2-Zn₂ from the similar condensation reaction of isophthaldehyde and 10 with 9. The reaction proceeded well and gave $2-Zn_2$ in 60% yield after flash column chromatography. The simple ¹H-NMR spectrum of $3-H_6$ was consistent with its symmetric structure. It is interesting to note that the inner protons in the bridges of 2 and 3 (designated as H.

Wasielewski, M. R. Chem. Rev. 1992, 92, 435.
 Maruyama, K.; Osuka, A. Pure Appl. Chem. 1990, 62, 1511.
 (a) Chang, C. K.; Abdalmuhdi, L. J. Org. Chem. 1983, 48, 5388. Sessler, J. L.; Hugdahl, J.; Johnson, M. R. J. Org. Chem. 1986, 51, 2838. (c) Osuka, A.; Maruyama, K. Chem. Lett. 1987, 825. (d) Heiler, D.; McLendon, G.; Rogalski, P. J. Am. Chem. Soc. 1987, 109, 604. (e) Osuka, A.; Maruyama, K. J. Am. Chem. Soc. 1988, 110, 4454. (f) Danks, I. P.; Sutherland, I. O.; Yap, C. H. J. Chem. Soc., Perkin Trans. 1 1990, 421. (g) Anderson, H. L.; Sanders, J. K. M. Angew. Chem., Int. Ed. Engl. 1990, 29. 1400.

⁽⁴⁾ Newman, M. S.; Lee, L. F. J. Org. Chem. 1977, 37, 4468.

 ⁽⁶⁾ Clezy, P. S.; Nichol, A. W. J. Aust. Chem. 1965, 11, 1835.
 (6) Osuka, A.; Nagata, T.; Kobayashi, F.; Maruyama, K. J. Heterocycl.

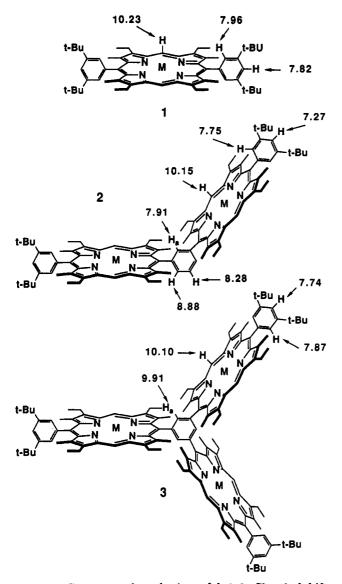


Figure 1. Structures of porphyrin models 1-3. Chemical shifts (ppm) of selected protons are indicated for the respective free base porphyrins.

in Figure 1) appeared at considerably different chemical shifts: 7.91 and 9.91 ppm in 2–H₄ and 3–H₆, respectively.⁷ This difference in the chemical shifts suggests that the spatial arrangement of the two porphyrins in 2–H₄ is not necessarily the same as that in 3–H₆. The synthetic strategy disclosed here will be widely applicable to the preparation of oligomeric porphyrins.

Aldehyde 10 has often been employed as a building block in porphyrin models,^{8,9} presumably because 3,5-di-*tert*butylphenyl substituents at a porphyrin meso position enhance the solubility of porphyrins in most of organic solvents by retarding porphyrin aggregation. This property seems to be important for the high yields of 2 and 3. When *p*-tolualdehyde was used instead of 10 in the cyclization reaction under identical conditions, the diporphyrin yield dropped to ca. 30%.

Table I. Absorption and Fluorescence Properties of 1-3*

porphyrin	absorptn λ_{max} (nm)		fluorescence		
	Soret	Q bands	λ_{max} (nm)	$\phi_{\rm rel}{}^b$	τ_{f} (ns)
1-H2	407	505, 536, 576, 627	628, 694	1.00	12 (97)
2H4	416	509, 541, 580, 631	636, 704	0.90	9.0 (97)
3-H6	425	516, 550, 583, 636	653, 710	0.44	7.1 (96)
1-Zn	416	546, 578	582, 636	1.00	1.5 (80)
$2-Zn_2$	413, 430	549, 581	602,650	0.80	1.2 (86)
3-Zn ₃	417, 432	556, 594	612, 657	0.48	<1 ^d
1-Mg	418	554, 586	595, 648	1.00	7.2 (83)
$2-Mg_2$	419, 434	556, 599	613,658	0.55	4.7 (87)
3-Mg3	422, 435	563, 604	627, 675	0.28	3.4 (89)

⁶ Measured in THF at rt. ^b Fluorescence quantum yield relative to that of the respective monomer. ^c Fluorescence lifetime measured by nanosecond time-correlated single-photon counting technique. Numbers in parentheses indicate the normalized preexponential factor in double exponential fit. ^d Shorter than the machine's response time.

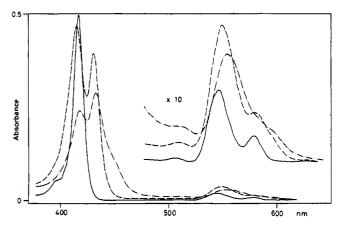


Figure 2. UV-vis absorption spectra of 1-Zn (--), dimer $2-Zn_2$ (--), and $3-Zn_3$ (--) in THF. Concentrations are 1×10^{-6} M.

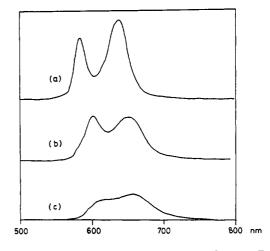


Figure 3. Fluorescence spectra of 1-Zn (a), dimer $2-Zn_2$ (b), and $3-Zn_3$ (c) in THF excited at their respective Soret maxima.

Magnesium complexes 1–Mg, 2–Mg₂, and 3–Mg₃ were prepared in good yields when the corresponding free-base porphyrins were heated with Mg(ClO₄)₂ in pyridine. The absorption and fluorescence properties of these porphyrin models in THF are summarized in Table I, and the absorption and fluorescence spectra of the zinc complexes are shown in Figures 2 and 3. A split Soret band due to exciton coupling was observed in the absorption spectrum of 2–Zn₂. Similar absorption spectra have been reported previously for 1,3-phenylene-bridged diporphyrins.^{3b,c} A split Soret band was also observed for 3–Zn₃, but the

⁽⁷⁾ One of the reviewers suggested that the downfield shift of the inner proton of $3-H_6$ may be attributed to a ring current effect of the adjacent porphyrin unit, in spite of some distortion.

⁽⁸⁾ Noblat, S.; Dietrich-Buchecker, C. O.; Sauvage, J.-P. Tetrahedron Lett. 1987, 28, 5829. Chambron, J.-C.; Heitz, V.; Sauvage, J.-P. J. Chem. Soc., Chem. Commun. 1992, 1131.

<sup>Soc., Chem. Commun. 1992, 1131.
(9) Tamiaki, H.; Suzuki, S.; Maruyama, K. Bull. Chem. Soc. Jpn., submitted.</sup>

relative intensity of the absorption band at longer wavelength was larger than that at shorter wavelength. This spectral behavior is the opposite of that of $2-Zn_2$. When the number of porphyrins increased, the fluorescence spectra became broader, the emission maximum was shifted to longer wavelength, the relative fluorescence quantum yields were decreased, and the fluorescence lifetimes became shorter. These changes caused by the increase in the number of porphyrins were even more prominent in the corresponding magnesium complexes.

Current efforts are being devoted to the preparation of hybrid metal complexes of the triporphyrin in order to study intramolecular electron and/or energy transfers in this topologically interesting molecule. Efforts are also being devoted to the extension of this methodology of double and/or multiple porphyrin cyclizations to other supramolecular systems.

Experimental Section

Melting points were measured on a Yanagimoto micro melting point apparatus and are uncorrected. UV-vis spectra were recorded on a Shimadzu and UV-3000 spectrometer. Steadystate fluorescence spectra were recorded on a Shimadzu RF-502A spectrofluorimeter. Fluorescence lifetimes were measured by the method of single photon counting on a HORIBA Model NAES 1100 nanosecond lifetime fluorimeter (2-ns pulse width). ¹H-NMR spectra were recorded on JMN-GX 400 and JMN-Alpha 500 spectrometers, and the isotope peaks in deuterated solvents were used as internal standards. Chemical shifts are reported on the δ scale (ppm) relative to tetramethylsilane. Mass spectra were recorded on a JEOL HX-110 spectrometer. Mass spectra of porphyrins were measured by the FAB method; the matrix was CHCl₃/m-nitrobenzyl alcohol unless otherwise stated. Infrared spectra were taken on a HORIBA FT-300 spectrometer. Preparative separations were usually performed by flash column chromatography on silica gel (Merck, Kieselgel 60H, Art. 7736).

For synthetic use, all reagents and solvents of the commercial reagent grade were used without further purification except where noted. Dry CH_3CN was obtained by reflux over and distillation from P_2O_5 and anhydrous K_2CO_3 and was stored over molecular sieves under nitrogen. Dry CH_2Cl_2 was distilled from P_2O_5 .

1,3-Bis(5,5-dimethyl-1,3-dioxan-2-yl)-5-bromobenzene(7). Compound 7 was synthesized from 5-bromo-m-xylene (2.78 g, 15 mmol) in five steps as shown in Scheme I: (1) NBS (6.6 g, 37 mmol) bromination (CCl₄ (150 mL), reflux, overnight, in the presence of BPO (0.3 g)); (2) acetolysis with sodium acetate (AcONa (5 g) in AcOH (100 mL), reflux, overnight); (3) LiAlH₄ (1.14 g, 30 mmol) reduction in THF (200 mL); (4) PCC (8.62 g, 40 mmol) oxidation in CH₂Cl₂ (400 mL) for 3 h at rt; and (5) protection with neopentyl alcohol (neopentyl alcohol (3.12 g, 30 mmol), TsOH (100 mg), 150 mL of CH₂Cl₂ (150 mL), overnight, rt). Recrystallization from methanol gave colorless needles of 7 (2.60 g, 6.75 mmol, 45%): mp 130.0-130.5 °C; mass (EI) m/z 385 (M⁺); ¹H-NMR (CDCl₃) 7.58 (2H, s, Ar-H), 7.47 (1H, s Ar-H), 5.28 (2H, s), 3.70 and 3.55 (8H, ABq, J = 10.4 Hz), 1.20 (6H, s, Me), and 0.70 (6H, s, Me); IR (KBr) 2958, 2931, 1577, 1468, 1377, 1163, 1105, 1028, and 987 cm⁻¹. Anal. Calcd for C₁₈H₂₅O₄Br: C, 56.11; H, 6.54; Br, 20.74. Found: C, 56.15; H, 6.50; Br, 20.77.

3,5-Bis(5,5-dimethyl-1,3-dioxan-2-yl)benzaldehyde (8). Magnesium turnings (84 mg, 3.5 mmol) were added to a threenecked flask and heated with stirring under N₂ for 4 h to activate the magnesium. Dry THF (1.5 mL) was added, and then a catalytic amount of I₂ was added in order to further activate the metal. Then, 7 (900 mg, 2.34 mmol) dissolved in 10 mL of dry THF was added slowly, and the resulting mixture was refluxed under N₂ overnight and then cooled to 0 °C. To the Grignard reagent thus prepared was added a mixture of dry DMF (1.5 mL) and dry THF (20 mL) slowly at 0 °C. After the mixture slowly warmed tort, stirring was continued for another 1 h. The reaction mixture was poured into 3 N HCl (30 mL) and extracted with ether (3 × 100 mL). The organic layers were combined, successively washed with aqueous NaHCO₃, water, and brine, and dried over anhyd Na₂SO₄. After the evaporation of the solvent, separation by silica gel column chromatography (eluent, CH₂Cl₂/ether = 12/1) gave 8 as a colorless solid (650 mg, 1.95 mmol, 83%): mp 122.0-122.5 °C; mass (EI) m/z 344 (M⁺); ¹H-NMR (CDCl₃) 10.15 (1H, s, CHO), 8.14 (2H, s, Ar-H), 8.04 (1H, s, Ar-H), 5.55 (2H, s), 3.92 and 3.76 (8H, ABq, J = 10.4 Hz), 1.36 (6H, s, Me), and 0.92 (6H, s, Me); IR (KBr) 2952, 2906, 1703, 1465, 1385, 1018, 978, and 802 cm⁻¹. Anal. Calcd for C₁₉H₂₆O₈: C, 68.24; H, 7.84. Found: C, 68.22; H, 7.90.

Synthesis of Porphyrin Monomers 1 and 11. Aldehydes 8 (668 mg, 2 mmol) and 10 (872 mg, 4 mmol) were dissolved in dry CH₃CN (40 mL). Then, dipyrrylmethane 9 (1368 mg, 6 mmol) dissolved in CH₃CN (5 mL) was added. After the resulting solution was stirred for 2-3 min, trichloroacetic acid (60 mg, 0.37 mmol) in dry CH₃CN (3 mL) was added. The mixture was stirred at rt for 14 h under N_2 in the dark. A solution of *p*-chloranil (2.1 g, 8.57 mmol) in dry THF (60 mL) was added, and stirring was continued for another 3 h. The resulting reaction mixture was poured into 6 N HCl solution and extracted with CHCl₃ until the extract was colorless. The CHCl₃ layers were combined, washed with aqueous NaHCO₃ and water, and dried over anhyd Na₂SO₄. A saturated solution of Zn(OAc)₂ in MeOH (30 mL) was added. The solution was heated at reflux for 1 h, poured into water, and dried over anhyd Na₂SO₄. After evaporation of the solvent, the fraction containing zinc porphyrin products was separated on a short silica gel column. After evaporation of the solvent, the residue was dissolved in a mixture of CH₂Cl₂ (100 mL), trifluoroacetic acid (100 mL), and water (20 mL). After refluxing for 6 h, the resulting mixture was poured into ice-water and extracted with CHCl₃ (3×100 mL). The CHCl₃ layers were combined, successively washed with aqueous NaHCO3 and water, and dried over anhyd Na₂SO₄. A saturated solution of Zn(OAc)₂ in MeOH (40 mL) was added, and the resulting mixture was heated at reflux for 1 h and poured into water. The organic layer was separated and dried over anhyd Na₂SO₄. After evaporation of the solvent, separation on silica gel flash column chromatography with CH_2Cl_2 as the eluent gave 1-Zn (the first fraction, 1374 mg, 50% yield based on the amount of 9 used) and 11–Zn (the second fraction, 690 mg, 40% yield based on the amount of 8 used). Free base $1-H_2$ was obtained by acidic demetalation of 1-Zn, which was transformed into magnesium complex 1-Mg under the usual conditions.¹⁰ 1-H₂: mp >300 °C; mass (FAB) m/z 855 (M⁺) ¹H-NMR (CDCl₃) 10.23 (2H, s, meso), 7.96 (4H, s, Ar-H), 7.82 (2H, s, Ar-H), 4.05 (8H, m, -CH₂CH₃), 2.50 (12H, s, Me), 1.82 (12H, t, -CH₂CH₃), 1.60 (36H, s, t~Bu), and -2.35 (2H, broad, NH); 2960, 2929, 1593, 1466, 1446, 1365, 1254, 1057, 849, and 771 cm⁻¹. Anal. Calcd for C₆₀H₇₈N₄: C, 84.26; H, 9.19; N, 6.55. Found: C, 84.21; H, 9.24; N, 6.51. 1–Zn: mp >300 °C; mass (FAB) m/z 916 $(M^+ - 1)$. 1-Mg: mp >300 °C; mass (FAB) m/z 877 (M⁺).

11-H₂: mp >300 °C; mass (FAB) m/z 800 (M⁺ + 1); ¹H-NMR (CDCl₃) 10.05 (2H, s, meso), 9.91 (2H, s, CHO), 8.55 (2H, s, Ar-H), 8.50 (1H, s, Ar-H), 7.56 (2H, s, Ar-H), 7.48 (1H, s, Ar-H), 8.70 (8H, m, $-CH_2CH_3$), 2.18 (6H, s, Me), 2.10 (6H, s, Me), 1.48 (12H, m, $-CH_2CH_3$), 1.25 (18H, s, t-Bu), and -2.68 (2H, broad, NH); IR (KBr) 2960, 2927, 1703, 1593, 1464, 1387, 1369, 1107, and 769 cm⁻¹. Anal. Calcd for C₅₄H₆₂N₄O₂: C, 81.16; H, 7.82; N, 7.01. Found: C, 81.10; H, 7.76; N, 6.97.

Synthesis of Porphyrin Trimer 3. Triporphyrin 3 was synthesized from $11-H_2$ in a single step. Thus, $11-H_2$ (130 mg, 0.16 mmol), 10 (280 mg, 1.28 mmol), and 9 (364 mg, 1.6 mmol) were dissolved in a mixture of dry CH₃CN (15 mL) and dry CH₂-Cl₂ (5 mL). After the solution was stirred for about 3 min, trichloroacetic acid (115 mg, 0.7 mmol) was added. The resulting mixture was stirred in the dark under N₂ for 20 h. A solution of *p*-chloranil (315 mg, 1.27 mmol) in THF (35 mL) was added, and the resulting solution was stirred for another 3 h. Then the solution was poured into 6 N HCl (250 mL) and extracted with CHCl₃ until the extract was colorless. The CHCl₃ layers were combined, neutralized by shaking with aqueous NaHCO₃, and washed with water. A saturated solution of Zn(OAc)₂ in MeOH (20 mL) was added, and the resulting mixture was heated at reflux for 1 h. The solution was poured into water, and the organic

⁽¹⁰⁾ Fuhrhop, J.-H.; Smith, K. M. Laboratory Methods. In *Porphyrins and Metalloporphyrins*; Smith, K. M., Ed.; Elsevier: Amsterdam, 1975; p 757.

layer was separated and dried over anhyd Na₂SO₄. After evaporation of the solvent, the zinc porphyrin complexes were separated by silica gel flash column chromatography with CHCl₃ as the eluent to give 3-Zn₃ (400 mg, 90% based on the amount of $11-H_2$ used) as a red-purple solid. Free base $3-H_6$, obtained by acidic demetalation of 3–Zn₃, was transformed into magnesium complex 3-Mg₃ under the usual conditions. 3-H₆: mp >300 °C; mass (FAB) m/z 2074 (M⁺ + 1); ¹H-NMR (CDCl₃) 10.10 (6H, s, meso), 9.91 (3H, s, Ar-H), 7.87 (6H, s, Ar-H), 7.74 (3H, s, Ar-H), 3.88 (12H, q, -CH₂CH₃), 3.75 (12H, q, -CH₂CH₃), 3.27 (18H, s, Me), 2.37 (18H, s, Me), 1.65 (18H, t, -CH₂CH₃), 1.50 (18H, t, -CH2CH3), 1.43 (54H, s, t-Bu), and -1.78 (6H, broad, NH); IR (KBr) 2960, 2927, 1702, 1621, 1450, 1365, 1255, 999, 954, 840, and 775 cm⁻¹. Anal. Calcd for C₁₄₄H₁₇₄N₁₂: C, 83.43; H, 8.46; N, 8.11. Found: C, 83.36; H, 8.50; N, 8.07. 3-Zn₃: mp >300 °C; mass (FAB) m/z 2263 (M⁺). 3-Mg₃: mp >300 °C; mass (FAB) m/z2140 (M⁺).

Synthesis of Porphyrin Dimer 2. A 1,3-phenylene-bridged diporphyrin was synthesized from commercially available isophthalaldehyde in a single step. Thus, isophthalaldehyde (26.8 mg, 0.2 mmol), 10 (350 mg, 1.6 mmol), and 9 (448 mg, 2.0 mmol) were dissolved in a mixture of dry CH₃CN (15 mL) and CH₂Cl₂ (5 mL). After the solution stirred for about 2–3 min, trichloroacetic acid (100 mg, 61 mmol) was added, and the resulting mixture was stirred in the dark under N₂ for 20 h. A solution of *p*-chloranil (400 mg, 1.61 mmol) in THF (40 mL) was added, and the resulting solution was stirred for another 2 h. The reaction mixture was poured into 6 N HCl and extracted with CHCl₃ until the extract was colorless. The organic layers were combined and neutralized with aqueous NaHCO₃. A saturated solution of Zn-(OAc)₂ in MeOH (40 mL) was added, and the resulting mixture was heated at reflux for 1 h. The solution was poured into water

again, and the organic layer was separated and dried over anhyd Na₂SO₄. After evaporation of the solvent, the zinc porphyrin complexes were separated by silica gel flash column chromatography with $CHCl_3$ as the eluent to give $2-Zn_2$ as a red-purple solid (184 mg, 60% yield based on the amount of isophthalaldehyde used). Free base 2-H₄, obtained by acidic demetalation of 2-Zn₂, was transformed into magnesium complex 2-Mg₂ under the usual conditions. 2-H₄: mp >300 °C; mass (FAB) m/z 1409 $(M^+ + 1)$; ¹H-NMR (CDCl₃) 10.15 (4H, s, meso), 8.88 (2H, d, J = 7.7 Hz, Ar-H), 8.28 (1H, t, J = 7.7 Hz, Ar-H), 7.91 (1H, broad, Ar-H), 7.75 (4H, s, Ar-H), 7.27 (2H, s, Ar-H), 3.99 (8H, q, -CH₂-CH₃), 3.95 (8H, q, $-CH_2CH_3$), 3.08 (12H, s, Me), 2.35 (12H, s, Me), 1.70 (24H, m, $-CH_2CH_3$), 1.52 (36H, s, t-Bu), and -2.13 (4H, broad, NH); IR (KBr) 2960, 2927, 1625, 1448, 1365, 1253, 1134, 1059, 953, 843, and 768 cm⁻¹. Anal. Calcd for C₉₈H₁₁₈N₈: C, 83.60; H, 8.44; N, 7.96. Found: C, 83.63; H, 8.40; N, 8.02. 2-Zn₂: mp >300 °C; mass (FAB) m/z 1534 (M⁺). 2-Mg₂: mp >300 °C; mass (FAB) m/z 1453 (M⁺ + 1).

Acknowledgment. This work was partially supported by a Grant-in-Aid for Specially Promoted Research (No. 02102005) from the Ministry of Education, Science, and Culture of Japan. B.-l.L. thanks for JSPS Foundation for a postdoctoral fellowship.

Supplementary Material Available: ¹H NMR spectra of 1-H₂, 2-H₄, 3-H₆, 7, 8, and 11-H₂ (6 pages). This material is contained in libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.